Indian Statistical Institute B. Math. Hons. III Year & M. Math. I Year Second Semester Examination 2008 Differential Geometry Marks: 100 Instructor: V. Pati

Date:

Attempt all questions. Each question carries 25 marks.

1. (a) Prove that $M = \{(x, y, z) : x^3 - y^2 + z^2 = 1\}$ is a smooth submanifold of \mathbb{R}^3 , and compute its tangent space at p = (0, 0, 1).

(b) Let $f: M \to \mathbb{R}$ be the smooth map defined by $f(x, y, z) = y^2 + z^3$. Compute Df(p) where p = (0, 0, 1).

2. (a) Find the condition that the C^{∞} -vector field $X(x,y) = \alpha(x,y)\partial_x + \beta(x,y)\partial_y$ be tangent to $S^1 = \{(x,y) : x^2 + y^2 = 1\}$ at each point $(x,y) \in S^1$.

(b) Find the condition that X as above is a left (= right) invariant vector field on S^1 , assuming the condition found in (a) is satisfied. (**Note:** the group operation on S^1 is multiplication of unit complex numbers.)

3. (a) Let $M : \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1 + z^2\}$ be the hyperboloid of one-sheet in \mathbb{R}^3 . Let $U = M \cap \{y = 0, x > 0\}$. Using suitable local coordinates on U, compute the 1st fundamental form (metric) on U induced from \mathbb{R}^3 .

(b) Compute the 2nd fundamental form of M above, and its mean and scalar curvatures.

- 4. (a) Consider the unit disc $\mathbb{D} = \{(x, y) : x^2 + y^2 < 1\}$ with the Poincare metric $g(x, y) = \frac{4(dx^2 + dy^2)}{(1 x^2 y^2)^2}$. Compute its Christoffel symbols.
 - (b) Compute the scalar curvature of the metric above.